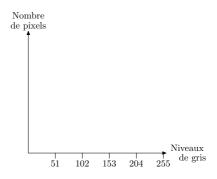
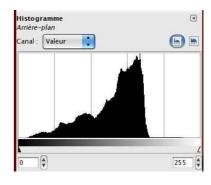


Que devient une image lorsqu'on la grossit?

Le damier a été réalisé avec le logiciel Geogebra, et les trois niveaux de gris utilisés pour colorier les carrés ont pour codes 102; 153 et 204. Associer son code à chaque niveau de gris :


code:

code:


Tracer le diagramme en bâtons donnant les effectifs des différents niveaux de gris de l'image du damier (constituée de 100 pixels : 10×10).

Voici l'histogramme des niveaux de gris associé à l'éventail.

- 1. Quels sont les niveaux de gris qui ne sont pas représentés sur l'image? À quelle(s) couleur(s) cela correspond-il?
- 2. Quels sont les niveaux de gris les plus représentés? À quelle partie de l'image correspondent-ils?

En annexe 1 sont donnés quatre histogrammes et quatre images : retrouver les paires.

En regroupant les niveaux de gris par classes d'amplitude 51, voici les fréquences (en pourcentages) obtenues pour les images associées aux histogrammes A et C :

Niveaux de gris	[0;51]]51;102]]102;153]]153;204]]204;255]
Image de l'histogramme A	31,4	18,9	26,8	0,8	22,1
Image de l'histogramme C	27,8	26,5	9,6	4,3	31,8

Pour chacune de ces deux images, tracer le nouvel histogramme, obtenu après regroupement des niveaux de gris par classes d'amplitude 51.

D'après les données précédentes, l'image associée à l'histogramme A contient 26,8% de gris avec des niveaux compris entre 102 et 153. À votre avis, à quelle partie de l'image cela correspond-il?

En annexe 2 sont données quatre fonctions et quatre images : retrouver les paires.

À PROPOS D'IMAGES : Fiche élève (2)

_

Une image donnée par sa matrice

« MIRE » est une image dessinée en niveaux de gris. Cette image ne vous est pas communiquée, mais en revanche, dans le document nommé « Matrice de MIRE » (à chercher dans le dossier « Sujets/MPS »), vous trouverez la matrice (ou tableau) qui lui est associée.

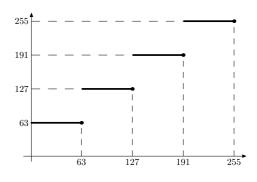
- 1. (a) De combien de pixels est composée l'image « MIRE »?
 - (b) Si l'on affichait cette image sur un écran avec une résolution de 72 points par pouce, quelles seraient les dimensions de l'image?
 - (c) Avec une plus grande résolution, l'image serait-elle plus grande ou plus petite?
 - (d) Décrire l'image « MIRE ».
- 2. (a) Dresser un tableau donnant les effectifs des niveaux de gris utilisés dans MIRE en les regroupant par classes : [0; 32[; [32; 64[, etc ...
 - (b) Tracer l'histogramme des niveaux de gris de MIRE, les niveaux de gris étant regroupés par classes comme précédemment.

Transformation d'une image

On souhaite transformer MIRE en une autre image en appliquant à chacun des pixels une fonction.

1. Premier exemple

On applique la fonction f_1 définie pour tous les entiers x de [0; 255] par $f_1(x) = 255 - x$ (c'est-à-dire qu'un pixel de niveau x de MIRE est transformé en un pixel de niveau 255 - x). On appelle « MIRE-1 » la nouvelle image obtenue.

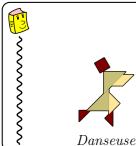

- (a) Donner l'histogramme des niveaux de gris de l'image « MIRE-1 » (sur feuille).
- (b) Donner la matrice de l'image « MIRE-1 » (sur tableur).
- (c) Quel effet la fonction f_1 a-t-elle sur l'image MIRE?
- (d) Tracer la représentation graphique de la fonction f_1 .

2. Deuxième exemple

On applique aux pixels de « MIRE » la fonction f_2 dont la courbe est donnée ci-contre.

On appelle « MIRE-2 » la nouvelle image obtenue.

- (a) Donner l'histogramme des niveaux de gris de l'image « MIRE-2 ».
- (b) Donner la matrice de l'image « MIRE-2 ».
- (c) Quel effet la fonction f_2 a-t-elle sur l'image MIRE?


3. Autres exemples

- (a) Existe-t-il une fonction f_3 qui laisse inchangés tous les pixels de MIRE? Donner la représentation graphique de f_3 ainsi que l'expression de $f_3(x)$.
- (b) On considère la fonction f_4 définie par $f_4(x) = \frac{x^2}{255}$.

Donner la représentation graphique de f_4 dans le même repère que f_3 .

Quel effet la fonction f_4 aurait-elle sur l'image MIRE?

- (c) Mêmes questions avec la fonction f_5 définie par $f_5(x) = 0, 2x + 101, 6$.
- (d) Donner une fonction qui permettrait d'éclaircir MIRE.

À PROPOS D'IMAGES: Fiche élève (3)

Eventail

Danseuse

Augmenter le contraste pour mieux voir les détails

Avec le logiciel GIMP, ouvrir l'image « Assiette.JPG » (à chercher dans le dossier « Sujets/MPS »). En haut à gauche, apparaît une trace un peu plus sombre. L'objectif est de mieux visualiser cette trace, et pour cela vous allez travailler sur cette partie de l'image :

1. Sélection de la partie concernée :

Sélectionner un rectangle en haut à gauche de l'image « Assiette.JPG », de largeur 100 pixels, et de « hauteur » 200 pixels (menu « Outils/Outils de sélection », et vous pouvez également faire afficher la grille dans le menu « Affichage »).

2. Étude de l'histogramme :

- (a) Faire apparaître l'histogramme des niveaux de gris associé à cette image (menu « Couleurs/infor $mations \gg$).
- (b) Quel est le nombre total de pixels contenus?
- (c) Quelle est la plus petite valeur de niveau de gris dans cette partie de l'image? La plus grande?

3. Propositions de fonctions :

- (a) Proposer une fonction à appliquer aux niveaux de gris des pixels de façon à accentuer les contrastes de cette partie de l'image. Expliquer le choix proposé.
- (b) Proposer une autre fonction, qui accentue également les contrastes, et qui fasse apparaître la trace en blanc. Expliquer le choix proposé.
- (c) Tester les fonctions proposées précédemment (menu « Couleurs/Courbes »). Conclure.

Jouer avec les couleurs

Les images sur lesquelles nous avons travaillé jusqu'à présent étaient en niveaux de gris, et chaque pixel était défini par un nombre qui correspondait à son niveau de gris. Dans une image en couleur, chaque pixel est défini par trois nombres qui correspondent à ses niveaux de couleur, en rouge (R), en vert (en V) et en bleu (B). On parle de codage RVB.

Avez-vous une idée de la couleur obtenue avec le triplet (199; 147; 57)? Pour le savoir, vous pouvez chercher un nuancier sur l'internet. J'en ai trouvé un à l'adresse : « http://www.jokconcept.net/codescouleurs-hexdecimal.php ».

Pour travailler sur une image en couleur avec un logiciel comme GIMP, on peut travailler séparément sur chacune des couleurs : ouvrir les images « FernandLeger » et « Monet », et faire apparaître les histogrammes associés aux différentes couleurs. Vous pouvez aussi essayer de transformer ces tableaux pour augmenter ou diminuer les contrastes dans les différentes couleurs.

Un message secret

Ouvrir avec le logiciel GIMP le fichier « Message-secret.xcf » : que voyez-vous? À vous d'y découvrir un message secret.